Rabu, 20 Mei 2015

(Metode)Simple Additive Weighting SAW

Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot.
Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967) (MacCrimmon, 1968).
Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Metode ini merupakan metode yang paling terkenal dan paling banyak digunakan dalam menghadapi situasi Multiple Attribute Decision Making (MADM). MADM itu sendiri merupakan suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu.
Metode SAW ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut. Skor total untuk alternatif diperoleh dengan menjumlahkan seluruh hasil perkalian antara rating (yang dapat dibandingkan lintas atribut) dan bobot tiap atribut. Rating tiap atribut haruslah bebas dimensi dalam arti telah melewati proses normalisasi matriks sebelumnya.

Langkah Penyelesaian Simple Additive Weighting (SAW)

Langkah Penyelesaian SAW sebagai berikut :
1. Menentukan kriteria-kriteria yang akan dijadikan acuan dalam pengambilan keputusan, yaitu Ci.
2. Menentukan rating kecocokan setiap alternatif pada setiap kriteria.
3. Membuat matriks keputusan berdasarkan kriteria(Ci), kemudian melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut (atribut keuntungan ataupun atribut biaya) sehingga diperoleh matriks ternormalisasi R.
4. Hasil akhir diperoleh dari proses perankingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (Ai)sebagai solusi.
Formula untuk melakukan normalisasi tersebut adalah :
1
Dimana :
rij = rating kinerja ternormalisasi
Maxij = nilai maksimum dari setiap baris dan kolom
Minij = nilai minimum dari setiap baris dan kolom
Xij = baris dan kolom dari matriks
Dengan rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i =1,2,…m dan j = 1,2,…,n.
Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai :
2
Dimana :
Vi = Nilai akhir dari alternatif
wj = Bobot yang telah ditentukan
rij = Normalisasi matriks
Nilai Viyang lebih besar mengindikasikan bahwa alternatifAi lebih terpilih

Contoh Kasus

16-01-2014 10-18-15
16-01-2014 10-18-38
16-01-2014 10-18-46
16-01-2014 10-18-56
16-01-2014 10-19-06
16-01-2014 10-19-14

Prinsip Dasar dan Aksioma AHP


AHP didasarkan atas 3 prinsip dasar yaitu:
1. Dekomposisi


Dengan prinsip ini struktur masalah yang kompleks dibagi menjadi bagian-bagian secara hierarki. Tujuan didefinisikan dari yang umum sampai khusus. Dalam bentuk yang paling sederhana struktur akan dibandingkan tujuan, kriteria dan level alternatif. Tiap himpunan alternatif mungkin akan dibagi lebih jauh menjadi tingkatan yang lebih detail, mencakup lebih banyak kriteria yang lain. Level paling atas dari hirarki merupakan tujuan yang terdiri atas satu elemen. Level berikutnya mungkin mengandung beberapa elemen, di mana elemen-elemen tersebut bisa dibandingkan, memiliki kepentingan yang hampir sama dan tidak memiliki perbedaan yang terlalu mencolok. Jika perbedaan terlalu besar harus dibuatkan level yang baru.
2. Perbandingan penilaian/pertimbangan (comparative judgments).
Dengan prinsip ini akan dibangun perbandingan berpasangan dari semua elemen yang ada dengan tujuan menghasilkan skala kepentingan relatif dari elemen. Penilaian menghasilkan skala penilaian yang berupa angka. Perbandingan berpasangan dalam bentuk matriks jika dikombinasikan akan menghasilkan prioritas.
3. Sintesa Prioritas
Sintesa prioritas dilakukan dengan mengalikan prioritas lokal dengan prioritas dari kriteria bersangkutan di level atasnya dan menambahkannya ke tiap elemen dalam level yang dipengaruhi kriteria. Hasilnya berupa gabungan atau dikenal dengan prioritas global yang kemudian digunakan untuk memboboti prioritas lokal dari elemen di level terendah sesuai dengan kriterianya.

5.Kelebihan dan Kekurangan dalam Metode AHP
Kelebihan

  1. Kesatuan (Unity). AHP membuat permasalahan yang luas dan tidak terstruktur menjadi suatu model yang fleksibel dan mudah dipahami.
  2. Kompleksitas (Complexity). AHP memecahkan permasalahan yang kompleks melalui pendekatan sistem dan pengintegrasian secara deduktif.
  3. Saling ketergantungan (Inter Dependence). AHP dapat digunakan pada elemen-elemen sistem yang saling bebas dan tidak memerlukan hubungan linier.
  4. Struktur Hirarki (Hierarchy Structuring). AHP mewakili pemikiran alamiah yang cenderung mengelompokkan elemen sistem ke level-level yang berbeda dari masing-masing level berisi elemen yang serupa.
  5. Pengukuran (Measurement).AHP menyediakan skala pengukuran dan metode untuk mendapatkan prioritas.
  6. Konsistensi (Consistency).AHP mempertimbangkan konsistensi logis dalam penilaian yang digunakan untuk menentukan prioritas.
  7. Sintesis (Synthesis).AHP mengarah pada perkiraan keseluruhan mengenai seberapa diinginkannya masing-masing alternatif.
  8.  Trade Off.AHP mempertimbangkan prioritas relatif faktor-faktor pada sistem sehingga orang mampu memilih altenatif terbaik berdasarkan tujuan mereka.
  9. Penilaian dan Konsensus (Judgement and Consensus).AHP tidak mengharuskan adanya suatu konsensus, tapi menggabungkan hasil penilaian yang berbeda.
  10. Pengulangan Proses (Process Repetition).AHP mampu membuat orang menyaring definisi dari suatu permasalahan dan mengembangkan penilaian serta pengertian mereka melalui proses pengulangan.
Metode “pairwise comparison” AHP mempunyai kemampuan untuk memecahkan masalah yang diteliti multi obyek dan multi kriteria yang berdasar pada perbandingan preferensi dari tiap elemen dalam hierarki. Jadi model ini merupakan model yang komperehensif. Pembuat keputusan menetukan pilihan atas pasangan perbandingan yang sederhana, membengun semua prioritas untuk urutan alternatif. “ Pairwaise comparison” AHP mwenggunakan data yang ada bersifat kualitatif berdasarkan pada persepsi, pengalaman, intuisi sehigga dirasakan dan diamati, namun kelengkapan data numerik tidak menunjang untuk memodelkan secara kuantitatif.
Konsep dasar AHP adalah penggunaan matriks pairwise comparison (matriks perbandingan berpasangan) untuk menghasilkan bobot relative antar kriteria maupun alternative. Suatu kriteria akan dibandingkan dengan kriteria lainnya dalam hal seberapa penting terhadap pencapaian tujuan di atasnya (Saaty, 1986).
Tingkat Kepentingan
Definisi
Keterangan
1
Sama Pentingnya
Kedua elemen mempunyai pengaruh yang sama
3
Sedikit lebih penting
Pengalaman dan penilaian sangat memihak satu elemen dibandingkan dengan pasangannya
5
Lebih Penting
Satu elemen sangat disukai dan secara praktis dominasinya sangat nyata, dibandingkan dengan elemen pasangannya.
7
Sangat Penting
Satu elemen terbukti sangat disukai dan secara praktis dominasinya sangat nyata, dibandingkan dengan elemen pasangannya.
9
Mutlak lebih penting
Satu elemen terbukti mutlak lebih disukai dibandingkan dengan pasangannya, pada keyakinan tertinggi.
2,4,6,8
Nilai Tengah
Diberikan bila terdapat keraguan penilaian di antara dua tingkat kepentingan yang berdekatan.



Skala dasar perbandingan berpasangan
(Sumber : Saaty, 1986)
Penilaian dalam membandingkan antara satu kriteria dengan kriteria yang lain adalah bebas satu sama lain, dan hal ini dapat mengarah pada ketidak konsistensian. Saaty (1990) telah membuktikan bahwa indeks konsistensi dari matrik ber ordo n dapat diperoleh dengan rumus :
CI = (λmaks-n)/(n-1)…………………………………………… (1)
Dimana :
CI = Indeks Konsistensi (Consistency Index)
λmaks = Nilai eigen terbesar dari matrik berordo n
Nilai eigen terbesar didapat dengan menjumlahkan hasil perkalian jumlah kolom dengan eigen vector. Batas ketidak konsistensian di ukur dengan menggunakan rasio konsistensi (CR), yakni perbandingan indeks konsistensi (CI) dengan nilai pembangkit random (RI). Nilai ini bergantung pada ordo matrik n.
Rasio konsistensi dapat dirumuskan :
CR = CI/RI……………………………………………………… (2)
Bila nilai CR lebih kecil dari 10%, ketidak konsistensian pendapat masih dianggap dapat diterima.
n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RI
0,00
0,00
0,58
0,90
1,12
1,24
1,32
1.41
1,45
1,49
1,51
1,48
1,56
1,57
1,59
Daftar Indeks random konsistensi (RI)

2.5.2.Kelemahan

  1. Ketergantungan model AHP pada input utamanya.
Input utama ini berupa persepsi seorang ahli sehingga dalam hal ini melibatkan subyektifitas sang ahli selain itu juga model menjadi tidak berarti jika ahli tersebut memberikan penilaian yang keliru.
6.Tahapan Dalam Metode AHP

Langkah-langkah AHP
Dalam metode AHP dilakukan langkah-langkah sebagai berikut (Kadarsyah Suryadi dan Ali Ramdhani, 1998) :

  1. Metode AHP ini hanya metode matematis tanpa ada pengujian secara statistik sehingga tidak ada batas kepercayaan dari kebenaran model yang terbentuk
  1. Mendefinisikan masalah dan menentukan solusi yang diinginkan.Dalam tahap ini kita berusaha menentukan masalah yang akan kita pecahkan secara jelas, detail dan mudah dipahami. Dari masalah yang ada kita coba tentukan solusi yang mungkin cocok bagi masalah tersebut. Solusi dari masalah mungkin berjumlah lebih dari satu. Solusi tersebut nantinya kita kembangkan lebih lanjut dalam tahap berikutnya.
  2. Membuat matrik perbandingan berpasangan yang menggambarkan kontribusi relatif atau pengaruh setiap elemen terhadap tujuan atau kriteria yang setingkat di atasnya.Matriks yang digunakan bersifat sederhana, memiliki kedudukan kuat untuk kerangka konsistensi, mendapatkan informasi lain yang mungkin dibutuhkan dengan semua perbandingan yang mungkin dan mampu menganalisis kepekaan prioritas secara keseluruhan untuk perubahan pertimbangan. Pendekatan dengan matriks mencerminkan aspek ganda dalam prioritas yaitu mendominasi dan didominasi. Perbandingan dilakukan berdasarkan judgment dari pengambil keputusan dengan menilai tingkat kepentingan suatu elemen dibandingkan elemen lainnya. Untuk memulai proses perbandingan berpasangan dipilih sebuah kriteria dari level paling atas hirarki misalnya K dan kemudian dari level di bawahnya diambil elemen yang akan dibandingkan misalnya E1,E2,E3,E4,E5. Lisensi
  3. Melakukan Mendefinisikan perbandingan berpasangan sehingga diperoleh jumlah penilaian seluruhnya sebanyak n x [(n-1)/2] buah, dengan n adalah banyaknya elemen yang dibandingkan.Hasil perbandingan dari masing-masing elemen akan berupa angka dari 1 sampai 9 yang menunjukkan perbandingan tingkat kepentingan suatu elemen. Apabila suatu elemen dalam matriks dibandingkan dengan dirinya sendiri maka hasil perbandingan diberi nilai 1. Skala 9 telah terbukti dapat diterima dan bisa membedakan intensitas antar elemen. Hasil perbandingan tersebut diisikan pada sel yang bersesuaian dengan elemen yang dibandingkan. Skala perbandingan perbandingan berpasangan dan maknanya yang diperkenalkan oleh Saaty bisa dilihat di bawah. Intensitas Kepentingan 1 = Kedua elemen sama pentingnya, Dua elemen mempunyai pengaruh yang sama besar 3 = Elemen yang satu sedikit lebih penting daripada elemen yanga lainnya, Pengalaman dan penilaian sedikit menyokong satu elemen dibandingkan elemen yang lainnya 5 = Elemen yang satu lebih penting daripada yang lainnya, Pengalaman dan penilaian sangat kuat menyokong satu elemen dibandingkan elemen yang lainnya 7 = Satu elemen jelas lebih mutlak penting daripada elemen lainnya, Satu elemen yang kuat disokong dan dominan terlihat dalam praktek. 9 = Satu elemen mutlak penting daripada elemen lainnya, Bukti yang mendukung elemen yang satu terhadap elemen lain memeliki tingkat penegasan tertinggi yang mungkin menguatkan. 2,4,6,8 = Nilai-nilai antara dua nilai pertimbangan-pertimbangan yang berdekatan, Nilai ini diberikan bila ada dua kompromi di antara 2 pilihan Kebalikan = Jika untuk aktivitas i mendapat satu angka dibanding dengan aktivitas j , maka j mempunyai nilai kebalikannya dibanding dengan i
  4. Menghitung nilai eigen dan menguji konsistensinya.Jika tidak konsisten maka pengambilan data diulangi.
  5. Mengulangi langkah 3,4, dan 5 untuk seluruh tingkat hirarki.
  6. Menghitung vektor eigen dari setiap matriks perbandingan berpasanganyang merupakan bobot setiap elemen untuk penentuan prioritas elemen-elemen pada tingkat hirarki terendah sampai mencapai tujuan. Penghitungan dilakukan lewat cara menjumlahkan nilai setiap kolom dari matriks, membagi setiap nilai dari kolom dengan total kolom yang bersangkutan untuk memperoleh normalisasi matriks, dan menjumlahkan nilai-nilai dari setiap baris dan membaginya dengan jumlah elemen untuk mendapatkan rata-rata.
  7. Memeriksa konsistensi hirarki.Yang diukur dalam AHP adalah rasio konsistensi dengan melihat index konsistensi. Konsistensi yang diharapkan adalah yang mendekati sempurna agar menghasilkan keputusan yang mendekati valid. Walaupun sulit untuk mencapai yang sempurna, rasio konsistensi diharapkan kurang dari atau sama dengan 10%.
  8. Membuat struktur hierarki yang diawali dengan tujuan utama. Setelah menyusun tujuan utama sebagai level teratas akan disusun level hirarki yang berada di bawahnya yaitu kriteria-kriteria yang cocok untuk mempertimbangkan atau menilai alternatif yang kita berikan dan menentukan alternatif tersebut. Tiap kriteria mempunyai intensitas yang berbeda-beda. Hirarki dilanjutkan dengan subkriteria (jika mungkin diperlukan).
Sedangkan langkah-langkah “pairwise comparison” AHP adalah
1.       Pengambilan data dari obyek yang diteliti.
2.       Menghitung data dari bobot perbandingan berpasangan responden dengan metode “pairwise comparison” AHP berdasar hasil kuisioner.
3.       Menghitung rata-rata rasio konsistensi dari masing-masing responden.
4.       Pengolahan dengan metode “pairwise comparison” AHP.
5.      Setelah dilakukan pengolahan tersebut, maka dapat disimpulkan adanya konsitensi   dengan tidak, bila data tidak konsisten maka diulangi lagi dengan pengambilan data seperti semula, namun bila sebaliknya maka digolongkan data terbobot yang selanjutnya dapat dicari nilai beta
7. Aplikasi PHP
Beberapa contoh aplikasi AHP adalah sebagai berikut:
1. Membuat suatu set alternatif;
2. Perencanaan
3. Menentukan prioritas;
4. Memilih kebijakan terbaik setelah menemukan satu set alternatif;
5. Alokasi sumber daya

Contoh Kasus
Menentukan prioritas dalam pemilihan mahasiswa terbaik

Langkah Penyelesaian :
1. Tetapkan permasalahan, kriteria dan sub kriteria (jika ada), dan alternative pilihan.
a. Permasalahan : Menentukan prioritas mahasiswa terbaik.
b. Kriteria : IPK, Nilai TOEFL, Jabatan Organisasi,
c. Subkriteria : IPK (Sangat baik : 3,5-4,00; Baik : 3,00-3,49; Cukup : 2,75-2,99)
TOEFL(Sangat baik : 506-600; Baik : 501-505 ; Cukup : 450 – 500)
Jabatan Organisasi (Ketua, Kordinator, Anggota)
CAT : Jumah kriteria dan sub kriteria, minimal 3. Karena jika hanya dua maka akan berpengaruh terhadap nilai CR (lihat tabel daftar rasio indeks konsistensi/RI)
2. Membentuk matrik Pairwise Comparison,kriteria. Terlebih dahulu melakukan penilaian perbandingan dari kriteria.(Perbandingan ditentukan dengan mengamati kebijakan yang dianut oleh penilai) adalah :
a. Kriteria IPK 4 kali lebih penting dari jabatan organisasi, dan 3 kali lebih penting dari TOEFL.
b. Kriteria TOEFL 2 kali lebih penting dari jabatan organisasi.
CAT : Terjadi 3 kali perbandingan terhadap 3 kriteria (IPK->jabatan, IPK->TOEFL, Jabatan->TOEFL). Jika ada 4 kriteria maka akan terjadi 6 kali perbandingan. Untuk memahaminya silahkan coba buat perbandingan terhadap 4 kriteria.
Sehingga matrik matrik Pairwise Comparison untuk kriteria adalah :

IPK
TOEFL
Jabatan
IPK
1
3
4
TOEFL
1/3
1
2
Jabatan
1/4
1/2
1
Cara mendapatkan nilai-nilai di atas adalah :
Perbandingan di atas adalah dengan membandingkan kolom yang terletak paling kiri dengan setiap kolom ke dua, ketiga dan keempat.

Perbandingan terhadap dirinya sendiri, akan menghasilkan nilai 1. Sehingga nilai satu akan tampil secara diagonal. (IPK terhadap IPK, TOEFL terhadap TOEFL dan Jabatan terhadap ajabatan)

Perbandingan kolom kiri dengan kolom-kolom selanjutnya. Misalkan nilai 3, didapatkan dari perbandingan IPK yang 3 kali lebih penting dari TOEFL (lihat nilai perbandingan di atas)

Perbandingan kolom kiri dengan kolom-kolom selanjutnya. Misalkan nilai ¼ didapatkan dari perbandingan Jabatan dengan IPK (ingat, IPK 4 kali lebih penting dari jabatan sehingga nilai jabatan adalah ¼ dari IPK)
3. Menentukan rangking kriteria dalam bentuk vector prioritas (disebut juga eigen vector ternormalisasi).
a. Ubah matriks Pairwise Comparison ke bentuk desimal dan jumlahkan tiap kolom tersebut.

IPK
TOEFL
Jabatan
IPK
1,000
3,000
Elemen Kolom
4,000
TOEFL
0,333
1,000
2,000
Jabatan
0,250
0,500
1,000
JUMLAH
1,583
4,500
7,000
b. Bagi elemen-elemen tiap kolom dengan jumah kolom yang bersangkutan.

IPK
TOEFL
Jabatan
IPK
0,632
0,667
0,571
TOEFL
0,211
0,222
0,286
Jabatan
0,158
0,111
0,143
Contoh : Nilai 0,632 adalah hasil dari pembagian antara nilai 1,000/1,583 dst.
c. Hitung Eigen Vektor normalisasi dengan cara : jumlahkan tiap baris kemudian dibagi dengan jumlah kriteria. Jumlah kriteria dalam kasus ini adalah 3.

IPK
TOEFL
Jabatan
Jumlah Baris
Eigen Vektor Normalisasi
IPK
0,632
0,667
0,571
1,870
0,623
TOEFL
0,211
0,222
0,286
0,718
0,239
Jabatan
0,158
0,111
0,143
0,412
0,137
- Nilai 1,870 adalah hasil dari penjumlahan 0,632+0,667+0,571
- Nilai 0,623 adalah hasil dari 1,870/3.
- Dst
d. Menghitung rasio konsistensi untuk mengetahui apakah penilaian perbandingan kriteria bersifat konsisten.
- Menentukan nilai Eigen Maksimum (λmaks).
Λmaks diperoleh dengan menjumlahkan hasil perkalian jumlah kolom matrik Pairwise Comparison ke bentuk desimal dengan vector eigen normalisasi.
Λmaks = (1,583 x 0,623 )+(4,500 x 0,239)+(7,000 x 0,137) = 3,025
- Menghitung Indeks Konsistensi (CI)
CI = (λmaks-n)/n-1 = 0,013
- Rasio Konsistensi =CI/RI, nilai RI untuk n = 3 adalah 0,58 (lihatDaftar Indeks random konsistensi (RI))
CR = CI/RI = 0,013/0,58 = 0,022
Karena CR < 0,100 berari preferensi pembobotan adalah konsisten
4. Untuk matrik Pairwise Comparison sub kriteria, saya asumsikan memiliki nilai yang sama dengan matrik Pairwise Comparison kriteria. Anda bisa mencoba merubah nilai pembobotan jika ingin lebih memahami pembentukan matrik ini.
a. Sub kriteria IPK

Sangat Baik
Baik
Cukup
Jumlah Baris
Eigen Vektor Normalisasi
Sangat Baik
0,632
0,667
0,571
1,870
0,623
Baik
0,211
0,222
0,286
0,718
0,239
Cukup
0,158
0,111
0,143
0,412
0,137
b. Sub Kriteria TOEFL

Sangat Baik
Baik
Cukup
Jumlah Baris
Eigen Vektor Normalisasi
Sangat Baik
0,632
0,667
0,571
1,870
0,623
Baik
0,211
0,222
0,286
0,718
0,239
Cukup
0,158
0,111
0,143
0,412
0,137
c. Sub Kriteria Jabatan Organisasi

Ketua
Koordinator
Anggota
Jumlah Baris
Eigen Vektor Normalisasi
Ketua
0,632
0,667
0,571
1,870
0,623
Koordinator
0,211
0,222
0,286
0,718
0,239
Anggota
0,158
0,111
0,143
0,412
0,137
5. Terakhir adalah menentukan rangking dari alternatif dengan cara menghitung eigen vector untuk tiap kirteria dan sub kriteria.

IPK
TOEFL
Jabatan Organisasi
HASIL
Ifan
1
3
3
0,440
Rudy
3
3
1
0,204
Anton
1
2
2
0,479
- Nilai bobot diperoleh dari kondisi yang dimiliki oleh alternatif. Contoh pada Ifan, yang memiliki IPK 3,86 (sangat baik), maka diberikan bobot 1 (2 untuk baik dan 3 untuk cukup). Ifan memiliki nilai TOEFL 470 (cukup), sehingga diberikan bobot 3 dan jabatan organisasi adalah anggota dengan bobot 3 (1 untuk ketua dan 2 untuk koordinator).
- Hasil diperoleh dari perkalian nilai vector kriteria dengan vector sub kriteria. Dan setiap hasil perkalian kriteria dan subkriteria masing-masing kolom dijumlahkan. Contoh Ifan, pada kolom IPK (eigen vector : 0,623) dikalikan dengan sub kriteria IPK yaitu sangat baik (eigen vector : 0,623).dst
(IPK x Sangat Baik + TOEFL x Sangat Baik + Jabatan Organisasi x Anggota) = 0,440
Dari hasil di atas, Anton memiliki nilai paling tinggi sehingga layak menjadi mahasiswa terbaik..
Metode AHP bisa digunakan untuk menentukan segala kasus yang membutuhkan output berupa prioritas dari hasil perangkingan. Syarat kriteria yang digunakan adalah data yang “seimbang” (misal data mahasiswa Kampus XYZ bisa dibandingkan dengan kampus ABC, tidak bisa dibandnigkan dengan sekolah XXX).